top of page
< Back


Non-ionotropic signaling through the NMDA receptor GluN2B carboxy-terminal domain drives dendritic spine plasticity and reverses fragile X phenotypes.


Non-ionotropic signaling through the NMDA receptor GluN2B carboxy-terminal domain drives dendritic spine plasticity and reverses fragile X phenotypes.

N-methyl-D-aspartate (NMDA)-induced spine shrinkage proceeds independently of ion flux and requires the initiation of de novo protein synthesis. Using subtype-selective pharmacological and genetic tools, we find that structural plasticity is dependent on ligand binding to GluN2B-containing NMDA receptors (NMDARs) and signaling via the GluN2B carboxy-terminal domain (CTD). Disruption of non-ionotropic signaling by replacing the GluN2B CTD with the GluN2A CTD leads to an increase in spine density, dysregulated basal protein synthesis, exaggerated long-term depression mediated by G-protein-coupled metabotropic glutamate receptors (mGluR-LTD), and epileptiform activity reminiscent of phenotypes observed in the Fmr1 knockout (KO) model of fragile X syndrome. By crossing the Fmr1 KO mice with animals in which the GluN2A CTD has been replaced with the GluN2B CTD, we observe a correction of these core fragile X phenotypes. These findings suggest that non-ionotropic NMDAR signaling through GluN2B may represent a novel therapeutic target for the treatment of fragile X and related causes of intellectual disability and autism.

  • Osterlab

Osterweil Lab

bottom of page